MATIIBIAUMIVERSITY OF SCIEMCE AMD TECHMOLOGY

Faculty of Health and Applied Sciences

Department of Mathematics and Statistics

QUALIFICATIONS: BACHELOR OF SCIENCES IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: O7BAMS	LEVEL: 5
COURSE: STATISTICAL INFERENCE 1	COURSE CODE: SIN502S
DATE: JANUARY 2020	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER	
EXAMINER(S)	MR. EM. MWAHI
MODERATOR:	DR. D. NTIRAMPEBA

THIS QUESTION PAPER CONSISTS OF 6 PAGES
(Including this front page)
INSTRUCTIONS

1. Answer all the questions and number your solutions correctly.
2. Question 1 of this question paper entails multiple choice questions with options A to D. Write down the letter corresponding to the best option for each question.
3. For Question 2 \& 3 you are required to show clearly all the steps used in the calculations.
4. All written work MUST be done in blue or black ink.
5. Untidy/ illegible work will attract no marks.

PERMISSIBLE MATERIALS

1. Non-Programmable Calculator without the cover

ATTACHMENTS

Z-table, t-table, Chi-square table, Mann-Whitney U table and the F-table

QUESTION 1 [20 MARKS]

1.1 Decreasing the confidence level, while holding the sample size the same, will do what to the length of your confidence interval?
A. Make it bigger
B. Make it smaller
C. It will stay the same
D. Cannot be determined from the given information
1.2 If you increase the sample size, what will happen to the length of your confidence interval?
A. Make it smaller
B. Make it bigger
C. It will stay the same
D. Cannot be determined from the given information
1.3 A certain brand of jelly beans are made so that each package contains about the same number of beans. The filling procedure is not perfect, however. The packages are filled with an average of 375 jelly beans, but the number going into each bag is normally distributed with a standard deviation of 8 . Yesterday, Jane went to the store and purchased four of these packages in preparation for a Spring party. Jane was curious, and she counted the number of jelly beans in these packages - her four bags contained an average of 382 jelly beans.
1.3.1 In the above scenario, which of the following is a parameter?
A. The average number of jelly beans in Jane's packages, which is 382 .
B. The average number of jelly beans in Jane's packages, which is unknown.
C. The average number of jelly beans in all packages made, which is 375 .
D. The average number of jelly beans in all packages made is unknown
1.3.2 If you went to the store and purchased six bags of this brand of jelly beans, what is the probability that the average number of jelly beans in your bags is less than 373 ?
A. 0.2709
B. 03085
C. 0.4013
D. 0.7291
1.4 A survey was conducted to get an estimate of the proportion of smokers among the graduate students. Report says 38% of them are smokers. Chatterjee doubts the result and thinks that the actual proportion is much less than this. Choose the correct choice of null and alternative hypothesis Chatterjee wants to test.

A. $\mathrm{Ho}: \mathrm{p}=0.38$ versus $\mathrm{Ha}: \mathrm{p} \leq 0.38$.
B. $\mathrm{Ho}: \mathrm{p}=0.38$ versus $\mathrm{Ha}: p>0.38$.
C. $\mathrm{Ho}: \mathrm{p}=0.38$ versus $\mathrm{Ha}: \mathrm{p}<0.38$.
D. None of the above.
1.5 To test for equality of two population variances, one would use the \qquad test.
A. z
B. t
C. Chi-square
D. F
1.6 What test can be used to test the difference between two small sample means when population variances are unknown?
A. z
B. t
C. Chi-square
D. F
1.7 If in a random sample of 400 items, 88 are found to be defective. If the null hypothesis is that 20% of the items in the population are defective, what is the value of the test statistic?
A. 0.02
B. 1
C. 0.9656
D. 0.22
1.8 A two-tailed test is one where:
A. Results in only one direction can lead to rejection of the null hypothesis
B. Negative sample means lead to rejection of the null hypothesis
C. Results in either of two directions can lead to rejection of the null hypothesis
D. No results lead to the rejection of the null hypothesis
1.9 The null and alternative hypotheses divide all possibilities into:
A. Two sets that overlap
B. Two non-overlapping sets
C. Two sets that may or may not overlap
D. As many sets as necessary to cover all possibilities

QUESTION 2 [43 Marks]

2.1 MNM Corporation gives each of its employees an aptitude test. The scores on the test are normally distributed with a mean of 75 and a standard deviation of 15. A simple random sample of 25 is taken from a population of 500 .
(a) What is the probability that the average aptitude test score in the sample will be between 70.14 and 82.14 ?
(b) What is the probability that the average aptitude test score in the sample will be equal to or greater than 82.68 ?
(c) Find a value, C , such that $\mathrm{P}(\bar{X} \geq \mathrm{C})=0.015$.
2.2 A polling firm samples 600 likely voters and asks them whether they favour a proposal involving school bonds. A total of 330 of these voters indicate that they favour the proposal.
(a) Estimate the true population proportion of voters who favour the proposal with a. 99% level of confidence.
(b) Can we conclude at the 10% level of significance that more than 50% of all likely voters favour the proposal?
2.3 In a study of the relationship of the shape of a tablet to its dissolution time, 6 disk-shaped ibuprofen tablets and 8 oval-shaped ibuprofen tablets were dissolved in water. The two population variances are assumed to be nearly equal. The dissolve times, in seconds, were as follows:
$\begin{array}{lllll}\text { Disk: } & 269.0 & 249.3 & 255.2 & 252.7\end{array}$
261.6

Oval: 268.8
289.4
260.0
273.5
253.9
278.5
261.6
280.2
(a) Estimate and interpret the true population mean difference between the two shapes of a tablet with the 5% level of significance.
(b) Can we conclude that the mean dissolve times differ between the two shapes? Use alpha $=0.01$.

QUESTION 3 [26 Marks]

3.1 Does physical exercise alleviate depression? We find some depressed people and check that they are all equivalently depressed to begin with. Then we allocate each person randomly to one of two groups: 20 minutes of jogging per day; or 60 minutes of jogging per day. At the end of a month, we ask each participant to rate how depressed they now feel, on a Likert scale that runs from 1 ("totally miserable") through to 100 (ecstatically happy"). Ratings were recorded in the table below:

Jogging for 20 minutes	22	27	39	29	46	48	49
Jogging for 60 minutes	59	66	38	49	56	60	56

(a) Use the Mann-Whitney U test to test if there is a difference in ratings between the two groups. Use alpha $=0.01$
(b) Suppose the data meet the requirements for a parametric test, what parametric test can be used instead of the Mann-Whitney U test?
3.2 The Mozart effect refers to a boost of average performance on tests for elementary school students if the students listen to Mozart's chamber music for a period of time immediately before the test. In order to attempt to test whether the Mozart effect actually exists, an elementary school teacher conducted an experiment by dividing her third-grade class of 6 students into three groups of 2. The first group was given an end-of-grade test without music; the second group listened to Mozart's chamber music for 10 minutes; and the third groups listened to Mozart's chamber music for 20 minutes before the test. The scores of the 15 students are given below:

Group1	Group 2	Group 3
80	79	73
63	73	82

Using the ANOVA F-test at $\alpha=0.10$, is there sufficient evidence in the data to suggest that the Mozart effect exists?

QUESTION 4 [11 MARKS]

In preparing a national promotional campaign to raise funds for Operation Feed the Poor, the organising charity examined previous record of donations to establish if age of donor is a factor in the monetary size of the donation received from the donor. Their records were arranged into the following contingency table:

Size donation	Age group			
	$20-34$	$35-49$	$50-64$	Over 64
	25	40	47	46
\$50-\$100	69	51	74	57
Under \$50	36	29	19	37

Can it be concluded that the age of a donor influences the size of the donation to this charity? Test at the 1% significance level.

Critical Values of the Mann-Whitney U
(Two-Tailed Testing)

n_{2}	α	n_{1}																	
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3	. 05	--	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
	. 01	--	0	0	0	0	0	0	0	0	1	1	1	2	2	2	2	3	3
4	. 05	--	0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	14
	. 01	--	--	0	0	0	1	1	2	2	3	3	4	5	5	6	6	7	8
5	. 05	0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
	. 01	--	--	0	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	. 05	1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
	. 01	--	0	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	. 05	1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
	. 01	--	0	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	. 05	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
	. 01	--	1	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	. 05	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
	. 01	0	1	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	. 05	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
	. 01	0	2	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42
11	. 05	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
	. 01	0	2	5	7	10	13	16	18	21	24	27	30	33	36	39	42	45	48
12	. 05	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
	. 01	1	3	6	9	12	15	18	21	24	27	31	34	37	41	44	47	51	54
13	. 05	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
	. 01	1	3	7	10	13	17	20	24	27	31	34	38	42	45	49	53	56	60
14	. 05	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
	. 01	1	4	7	11	15	18	22	26	30	34	38	42	46	50	54	58	63	67
15	. 05	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
	. 01	2	5	8	12	16	20	24	29	33	37	42	46	51	55	60	64	69	73
16	. 05	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
	. 01	2	5	9	13	18	22	27	31	36	41	45	50	55	60	65	70	74	79
17	. 05	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87	93	99	105
	. 01	2	6	10	15	19	24	29	34	39	44	49	54	60	65	70	75	81	86
18	. 05	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
	. 01	2	6	11	16	21	26	31	37	42	47	53	58	64	70	75	81	87	92
19	. 05	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
	. 01	3	7	12	17	22	28	33	39	45	51	56	63	69	74	81	87	93	99
20	. 05	8	14	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127
	. 01	3	8	13	18	24	30	36	42	48	54	60	67	73	79	86	92	99	105

APPENDIX C: The Standard Normal Distribution

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

APPENDIX D: The t-distribution

APPENDIX E: The Chi-Square Distribution

dflp	. 995	. 990	. 975	. 950	. 900	. 750	. 500	. 250	. 100	. 050	. 025	. 010	. 005
1	0.00004	0.00016	0.00098	0.00393	0.01579	0.10153	0.45494	1.32330	2.70554	3.84146	5.02389	6.63490	7.87944
2	0.01003	0.02010	0.05064	0.10259	0.21072	0.57536	1.38629	2.77259	4.60517	5.99146	7.37776	9.21034	10.59663
3	0.07172	0.11483	0.21580	0.35185	0.58437	1.21253	2.36597	4.10834	6.25139	7.81473	9.34840	11.34487	12.83816
4	0.20699	0.29711	0.48442	0.71072	1.06362	1.92256	3.35669	5.38527	7.77944	9.48773	11.14329	13.27670	14.86026
5	0.41174	0.55430	0.83121	1.14548	1.61031	2.67460	4.35146	6.62568	9.23636	11.07050	12.83250	15.08627	16.74960
6	0.67573	0.87209	1.23734	1.63538	2.20413	3.45460	5.34812	7.84080	10.64464	12.59159	14.44938	16.81189	18.54758
7	0.98926	1.23904	1.68987	2.16735	2.83311	4.25485	6.34581	9.03715	12.01704	14.06714	16.01276	18.47531	20.27774
8	1.34441	1.64650	2.17973	2.73264	3.48954	5.07064	7.34412	10.21885	13.36157	15.50731	17.53455	20.09024	21.95495
9	1.73493	2.08790	2.70039	3.32511	4.16816	5.89883	8.34283	11.38875	14.68366	16.91898	19.02277	21.66599	23.58935
10	2.15586	2.55821	3.24697	3.94030	4.86518	6.73720	9.34182	12.54886	15.98718	18.30704	20.48318	23.20925	25.18818
11	2.60322	3.05348	3.81575	4.57481	5.57778	7.58414	10.34100	13.70069	17.27501	19.67514	21.92005	24.72497	26.75685
12	3.07382	3.57057	4.40379	5.22603	6.30380	8.43842	11.34032	14.84540	18.54935	21.02607	23.33666	26.21697	28.29952
13	3.56503	4.10692	5.00875	5.89186	7.04150	9.29907	12.33976	15.98391	19.81193	22.36203	24.73560	27.68825	29.81947
14	4.07467	4.66043	5.62873	6.57063	7.78953	10.16531	13.33927	17.11693	21.06414	23.68479	26.11895	29.14124	31.31935
15	4.60092	5.22935	6.26214	7.26094	8.54676	11.03654	14.33886	18.24509	22.30713	24.99579	27.48839	30.57791	32.80132
16	5.14221	5.81221	6.90766	7.96165	9.31224	11.91222	15.33850	19.36886	23.54183	26.29623	28.84535	31.99993	34.26719
17	5.69722	6.40776	7.56419	8.67176	10.08519	12.79193	16.33818	20.48868	24.76904	27.58711	30.19101	33.40866	35.71847
18	6.26480	7.01491	8.23075	9.39046	10.86494	13.67529	17.33790	21.60489	25.98942	28.86930	31.52638	34.80531	37.15645
19	6.84397	7.63273	8.90652	10.11701	11.65091	14.56200	18.33765	22.71781	27.20357	30.14353	32.85233	36.19087	38.58226
20	7.43384	8.26040	9.59078	10.85081	12.44261	15.45177	19.33743	23.82769	28.41198	31.41043	34.16961	37.56623	39.99685
21	8.03365	8.89720	10.28290	11.59131	13.23960	16.34438	20.33723	24.93478	29.61509	32.67057	35.47888	38.93217	41.40106
22	8.64272	9.54249	10.98232	12.33801	14.04149	17.23962	21.33704	26.03927	30.81328	33.92444	36.78071	40.28936	42.79565
23	9.26042	10.19572	11.68855	13.09051	14.84796	18.13730	22.33688	27.14134	32.00690	35.17246	38.07563	41.63840	44.18128
24	9.88623	10.85636	12.40115	13.84843	15.65868	19.03725	23.33673	28.24115	33.19624	36.41503	39.36408	42.97982	45.55851
25	10.51965	11.52398	13.11972	14.61141	16.47341	19.93934	24.33659	29.33885	34.38159	37.65248	40.64647	44.31410	46.92789
26	11.16024	12.19815	13.84390	15.37916	17.29188	20.84343	25.33646	30.43457	35.56317	38.88514	41.92317	45.64168	48.28988
27	11.80759	12.87850	14.57338	16.15140	18.11390	21.74940	26.33634	31.52841	36.74122	40.11327	43.19451	46.96294	49.64492
28	12.46134	13.56471	15.30786	16.92788	18.93924	22.65716	27.33623	32.62049	37.91592	41.33714	44.46079	48.27824	50.99338
29	13.12115	14.25645	16.04707	17.70837	19.76774	23.56659	28.33613	33.71091	39.08747	42.55697	45.72229	49.58788	52.33562
30	13.78672	14.95346	16.79077	18.49266	20.59923	24.47761	29.33603	34.79974	40.25602	43.77297	46.97924	50.89218	53.67196

F Table for alpha $=0.10$

df2/df1	1	2	3	4	5	6	7	8	9	10	12	15							
1	39.86346	49.5	53.59324	55.83296	57.24008	58.20442	58.90595	59.43898	59.85759	60.19498	12	15	20	24	30	40	60	120	INF
2	8.52632	9	9.16179	9.24342	9.29263	9.32553	9.34908	9.36677	9.38054	9.39157	9.40813	9.22034	$\underline{61.74029}$	62.00205	62.26497	62.52905	62.79428	63.06064	63.32812
3	5.53832	5.46238	5.39077	5.34264	5.30916	5.28473	5.26619	5.25167	5.24	5.23041	5.408156	5.42471	8448	9.44962	9.45793	9.46624	9.47456	9.48289	9.49122
4	4.54477	4.32456	4.19086	4.10725	4.05058	4.00975	3.97897	3.95494	3.93567	3.91988	3.89553	3.87036	3.84434	3.1809	5.1881742	5.15972	5.15119	5.14251	5.1337
5	4.06042	3.77972	3.61948	3.5202	3.45298	3.40451	3.3679	3.33928	3.31628						3.81742	3.80361	3.78957	3.77527	3.76073
7	3.58943	3.25744	3.07407	2.96053	2.88334	2.82739	2.78493	2.75158	2.72468	2.70251	2.65811	263223	59473	2.81834	2.79996	2.78117	95	2.74229	2.72216
8	3.45792	3.11312	2.9238	2.80643	2.72645	2.66833	2.62413	2.58935	2.56124	2.53804	250196	2.46422	2.59473	2.5	2.55546	2.5351	2.51422	2.49279	2.47079
9	3.3603	3.00645	2.81286	2.69268	2.61061	2.55086	2.50531	2.46941	2.44034	2.41632	237888	233962	2.2983	2.4041	2.38302	2.36136	2.3391	2.31618	2.29257
10	3.28502	2.92447	2.72767	2.60534	2.52164	2.46058	2.41397	2.37715	2.34731				20074	2.27	2.25472	2.23196	2.20849	2.18427	2.15923
11	3.2252	2.85951	2.66023	2.53619	2.45118	2.38907	2.34157	2.304	2.2735	2.24823	2.20873	16	212305	210001					
12	3.17655	2.8068	2.60552	2.4801	2.39402	2.33102	2.28278	2.24457	2.21352	2.18776	147	210485	2.12305	,	2.07621	2.05161	2.02612	1.99965	1.97211
13	3.13621	2.76317	2.56027	2.43371	2.34672	2.28298	2.2341	2.19535	2.16382	2.1	209659	2053	2.05968	2.035	2.01149	1.9861	1.95973	1.93228	1.90361
14	3.10221	2.72647	2.52222	2.39469	2.30694	2.24256	2.19313	2.1539	2.12195	2.0954	2.05371	,	2.00698	1.98272	1.95757	1.93147	1.90429	1.87591	1.8462
15	3.07319	2.69517	2.48979	2.36143	2.27302	2.20808	2.15818	2.11853	2.08621			2.0095	1.	1.93766	1.91193	1.88516	1.85723	1.828	1.79728
17	3.02623	2.64464	2.43743	2.30775	2.21825	2.15239	2.10169	2.06134	2.02839	2.000	1957	1.91169	1.89127	1.86556	1.83879	1.81084	1.78156	1.75075	1.71817
18	3.00698	2.62395	2.41601	2.28577	2.19583	2.12958	2.07854	2.03789	2.00467	1.97	1.93334	1.88681	1.86236	1.83624	1.80901	1.78053	1.75063	1.71909	1.68564
19	2.9899	2.60561	2.39702	2.2663	2.17596	2.10936	2.05802	2.0171	1.98364	1.95	1.9117	1.886471	1.83685	1.81035	1.78269	1.75371	1.72322	1.69099	1.65671
20	2.97465	2.58925	2.38009	2.24893	2.15823	2.09132	2.0397	1.99853	1.96485	1.93674	1.89236	1.84494	1.89384	1.78731	1.75924	1.72979	1.69876	1.66587	1.63077
22	2.94858	2.56131	2.35117	2.21927	2.12794	2.0605	2.0084	1.9668	1.93273	1.90425	1.85925	1.82710	1.7758	1.74	1.71927	1.68896	1.65691	1.62278	1.58615
23	2.93736	2.54929	2.33873	2.20651	2.11491	2.04723	1.99492	1.95312	1.91888	1.89025	1.84497	1.81106		1.73122	1.70208	1.67138	1.63885	1.60415	1.56678
24	2.92712	2.53833	2.32739	2.19488	2.10303	2.03513	1.98263	1.94066	1.90625	1.877	1.83194	1.78388	1.74392	1.71588	1.68643	1.65535	1.62237	1.58711	1.54903
25	2.91774	2.52831	2.31702	2.18424	2.09216	2.02406	1.97138	1.92925	1.89469	1.86578	182	1.77083	1.73015	1.70185	1.6721	1.64067	1.60726	1.57146	1.5327
26	2.90913	2.5191	2.30749	2.17447	2.08218	2.01389	1.96104	1.91876	1.88407	1.85503	1.80902	1.75957	1.70589	1.67712	1.64682				
27	2.90119	2.51061	2.29871	2.16546	2.07298	2.00452	1.95151	1.90909	1.87427	1.84511	1.79889	1.74917	1.69514			1.61472	1.5805	1.54368	1.5036
28	2.89385	2.50276	2.2906	2.15714	2.06447	1.99585	1.9427	1.90014	1.8652	1.83593	1.78951	1.74917	1.69514	1.66616	1.6356	1.6032	1.56859	1.53129	1.49057
29	2.88703	2.49548	2.28307	2.14941	2.05658	1.98781	1.93452	1.89184	1.85679	182741	1.789	1.73954	1.68519	1.656	1.62519	1.5925	1.55753	1.51976	1.47841
30	2.88069	2.48872	2.27607	2.14223	2.04925	1.98033	1.92692	1.88412	1.84896	181949	1.780		1.67593	1.64655	1.61551	1.58253	1.54721	1.50899	1.46704
40	2.83535	2.44037	2.22609	2.09095	1.99682	1.92688	1.87252	1.82886	1.7929	1.76269	1.71456	1.66241	1.60515						
60	2.79107	2.39325	2.17741	2.04099	1.94571	1.87472	1.81939	1.77483	1.73802	1.70701	1.65743	1.60337			1.54108	1.50562	1.46716	1.42476	1.37691
120	2.74781	2.34734	2.12999	1.9923	1.89587	1.82381	1.76748	1.72196	1.68425	1.65238	,	1.60337	1.54349	1.51072	1.47554	1.43734	1.3952	1.34757	1.29146
inf	2.70554	2.30259	2.0838	1.94486	1.84727	1.77411	1.71672	1.6702	1.63152		1.54578	1.545	1.48207	1.44723	1.40938	1.3676	1.32034	1.26457	1.19256
									1.6315	1.59872	1.54578	1.48714	1.4206	1.38318	1.34187	1.29513	1.23995	1.1686	1

